Data Set for Class 3

Per Capita by Country, as per Wikipedia

Asia Afghanistan 700
Europe Albania 4400
Africa Algeria 5700
Oceania American Samoa 7400
Africa Angola 6600
The Americas Anguilla 12500
The Americas Antigua and Barbuda 13500
The Americas Argentina 11300
Asia Armenia 3400
The Americas Aruba 23400
Oceania Australia 65100
Europe Austria 49100
Asia Azerbaijan 7900
The Americas Bahamas 26200
Middle East Bahrain 22100
Asia Bangladesh 900
The Americas Barbados 14700
Europe Belarus 7500
Europe Belgium 45600
The Americas Belize 4900
Africa Benin 800
Asia Bhutan 2900
The Americas Bolivia 2800
Europe Bosnia and Herzegovina 4800
Africa Botswana 7300
The Americas Brazil 11100
Asia Brunei 39800
Europe Bulgaria 7300
Africa Burkina Faso 700
Africa Burundi 300
Asia Cambodia 1000
Africa Cameroon 1200
The Americas Canada 52100
Africa Cape Verde 3700
The Americas Cayman Islands 47000
Africa Central African Republic 400
Africa Chad 1200
The Americas Chile 15700
Asia China 6900
The Americas Colombia 8100
Africa Comoros 900
Africa Congo, Democratic Republic of the 300
Africa Congo, Republic of the 3100
The Americas Costa Rica 10300
Africa Côte d'Ivoire 1300
Europe Croatia 13400
The Americas Cuba 6500
The Americas Curaçao 36800
Europe Cyprus 25200
Europe Denmark 58300
Africa Djibouti 1800
The Americas Dominica 6700
The Americas Dominican Republic 5800
Asia East Timor 5200
The Americas Ecuador 5900
Africa Egypt 3100
The Americas El Salvador 4000
Africa Equatorial Guinea 24200
Africa Eritrea 500
Europe Estonia 18300
Africa Ethiopia 400
Europe European Union 34000
The Americas Falkland Islands 55400
Europe Faroe Islands 45300
Oceania Fiji 4700
Europe Finland 49200
Europe France 41700
Oceania French Polynesia 20600
Africa Gabon 12200
Africa Gambia, The 500
Asia Georgia 3600
Europe Germany 44300
Africa Ghana 1800
Europe Gibraltar 38800
Europe Greece 21800
The Americas Greenland 37500
The Americas Grenada 7400
Oceania Guam 28700
The Americas Guatemala 3700
Europe Guernsey 43400
Africa Guinea 600
Africa Guinea-Bissau 500
The Americas Guyana 5800
The Americas Haiti 800
The Americas Honduras 2200
Asia Hong Kong 38100
Europe Hungary 13100
Europe Iceland 46200
Asia India 1500
Asia Indonesia 3500
Middle East Iran 5200
Middle East Iraq 6600
Europe Ireland 46000
Europe Isle of Man 47800
Middle East Israel 35400
Europe Italy 33600
The Americas Jamaica 4900
Asia Japan 38500
Europe Jersey 57600
Middle East Jordan 5300
Asia Kazakhstan 12700
Africa Kenya 1000
Oceania Kiribati 1700
Asia Korea, North 1200
Asia Korea, South 24400
Europe Kosovo 3800
Middle East Kuwait 66500
Asia Kyrgyzstan 1300
Asia Laos 1500
Europe Latvia 15400
Middle East Lebanon 10500
Africa Lesotho 1300
Africa Liberia 400
Africa Libya 11800
Europe Liechtenstein 139300
Europe Lithuania 15300
Europe Luxembourg 110700
Asia Macau 87300
Europe Macedonia, Republic of 5000
Africa Madagascar 400
Africa Malawi 300
Asia Malaysia 10500
Asia Maldives 5800
Africa Mali 700
Europe Malta 22600
Oceania Marshall Islands 2800
Africa Mauritania 1200
Africa Mauritius 9000
The Americas Mexico 10600
Oceania Micronesia, Federated States of 3200
Europe Moldova 2200
Europe Monaco 159400
Asia Mongolia 3900
Europe Montenegro 6800
Africa Morocco 3200
Africa Mozambique 600
Africa Namibia 5600
Asia Nepal 600
Europe Netherlands 47600
Oceania New Caledonia 35700
Oceania New Zealand 40600
The Americas Nicaragua 1900
Africa Niger 400
Africa Nigeria 1700
Europe Norway 101400
Middle East Oman 26000
Asia Pakistan 1300
Middle East Palestine 1700
The Americas Panama 11400
Oceania Papua New Guinea 2500
The Americas Paraguay 4600
The Americas Peru 6700
Asia Philippines 2600
Europe Poland 13300
Europe Portugal 21000
The Americas Puerto Rico 23500
Middle East Qatar 104300
Europe Romania 8900
Europe Russia 14600
Africa Rwanda 600
The Americas Saint Kitts and Nevis 15000
The Americas Saint Lucia 8400
The Americas Saint Vincent and the Grenadines 7100
Oceania Samoa 3600
Europe San Marino 57900
Africa São Tomé and Príncipe 1700
Middle East Saudi Arabia 24800
Africa Senegal 1200
Europe Serbia 6000
Africa Seychelles 14000
Africa Sierra Leone 800
Asia Singapore 54700
The Americas Sint Maarten 21900
Europe Slovakia 17700
Europe Slovenia 22700
Oceania Solomon Islands 1800
Africa Somalia 600
Africa South Africa 6600
Africa South Sudan 1000
Europe Spain 28600
Asia Sri Lanka 3000
Africa Sudan 1500
The Americas Suriname 8800
Africa Swaziland 2700
Europe Sweden 57200
Europe Switzerland 80800
Middle East Syria 2900
Asia Taiwan 20900
Asia Tajikistan 1000
Africa Tanzania 700
Asia Thailand 5600
Africa Togo 500
Oceania Tonga 4500
The Americas Trinidad and Tobago 22000
Africa Tunisia 4400
Europe Turkey 10700
Asia Turkmenistan 7800
Africa Uganda 500
Europe Ukraine 3800
Middle East United Arab Emirates 70900
Europe United Kingdom 39600
The Americas United States 52800
The Americas Uruguay 15800
Asia Uzbekistan 1900
Oceania Vanuatu 3100
The Americas Venezuela 12900
Asia Vietnam 1900
The Americas Virgin Islands, British 38900
Middle East Yemen 1700
Africa Zambia 1600
Africa Zimbabwe 800

Assignment 2 of 3 and Solutions

Now it's time to put the concepts learned to use. Using data provided in Assignment 2 Data Set, try to solve the following tasks:



Below are the solutions... Now don't cheat... Try to solve first and then use the solutions to help you understand.


Class 2 of 3: Text and Lookup Functions

Here are the formulas that we looked at during class 2 of 3:

TEXT FUNCTIONS
The text functions are some of the most used in Excel when you're working with lists and database extractions. Whenever you extract data from a Database, more often than not it needs to be cleaned up. This is where the following text functions come to our help. Be aware however, these are not the comprehensive list of them. There are many other ones and I encourage you to explore the Function Wizard to learn other ones:


LOOKUP FUNCTIONS
The lookup functions are crucial to Excel. Without these the amount of manual work would be huge. Anyone who considers themselves a serious Excel student, must learn these. It is for this reason that I decided to cover them. They are not the easiest to use, but with practice, anyone can learn them.

The VLOOKUP function is the first one most people learn to use. I call it the basic lookup function because it's somewhat easy to understand and use. It definitely has its place among the heavy lifters in Excel; my issues with it is that it requires setup and if you don't follow it, it won't work. Here is its syntax and an example.



The INDEX-MATCH function is the more advanced and elegant of the lookup functions in my opinion. It's not perfect, because it also requires that the data be cleaned up of leading and trailing spaces for it to work. But outside of that, I use it almost exclusively. It's not the most intuitive of functions, but with practice, you'll get the hang of it. Here is its syntax and a example for you to use.


I know it was a lot to cover, but I feel it was necessary. Now, you must practice your skill. Use the data I've provided and look for the assignment and its solution to practice. Keep Excelling!



Assignment 2 Data Set


Rep Item Units
Jardine Binder 94
Thompson Binder 57
Andrews Binder 28
Gill Binder 46
Gill Binder 80
Howard Binder 29
Jardine Binder 11
Jones Binder 60
Jones Binder 4
Parent Binder 81
Smith Binder 87
Sorvino Binder 7
Jones Binder 60
Morgan Binder 28
Kivell Binder 50
Kivell Desk 5
Smith Desk 2
Sorvino Desk 3
Gill Pen 27
Howard Pen 96
Jones Pen 64
Parent Pen 15
Sorvino Pen 76
Jardine Pen Set 50
Jones Pen Set 16
Jones Pen Set 62
Kivell Pen Set 42
Morgan Pen Set 55
Parent Pen Set 74
Kivell Pen Set 96
Andrews Pencil 75
Andrews Pencil 66
Andrews Pencil 14
Gill Pencil 53
Gill Pencil 7
Jardine Pencil 36
Jardine Pencil 90
Sorvino Pencil 56
Thompson Pencil 32
Jones Pencil 35
Jones Pencil 95
Morgan Pencil 90
Smith Pencil 67


REFERENCE TABLE 1
Employee ID Name
530 Andrews
360 Gill
408 Howard
935 Jardine
989  Jones
505 Kivell
913  Morgan
869 Parent
519  Smith
522 Sorvino
752 Thompson


REFERENCE TABLE 2

Product Price
Binder 1.99
Desk  125
Pen 1.99
 Pen Set 4.99
Pencil 1.29

Class 2 Dataset 1

We will be using this data set for one of the exercises in class.

Ali Small 2
Arden Stone 3
Ariana Tucker 1
Bethany Howell 2
Constance Maxwell 3
Damon Kidd 4
Doris Simmons 3
Drake Middleton 4
Emily Gamble 2
Gary Myers 4
Gay Donaldson 2
Gay Schneider 3
Geoffrey Logan 3
Germaine Richardson 4
Gil Daniel 3
Ginger Mckay 3
Hedley Clark 1
Heidi Guzman 3
Ian Horn 3
India Sharpe 4
Jasper Barrera 4
Karly Stokes 4
Keaton Garcia 2
Keelie Hooper 3
Lilah Shields 4
Lillith Cleveland 4
Lucian Lopez 4
Lyle Kim 3
Mia Pitts 4
Ora Glass 3
Quinn Wolfe 2
Quyn Lyons 3
Reece Christian 4
Reece Holloway 2
Rhiannon Mccarty 1
Sarah Leonard 3
Serena Watkins 2
Shana Byers 4
Shay Carlson 4
Sonia Beach 3
Trevor Bray 4
Ulysses Mann 3
Ulysses Patterson 4
Vance Whitney 4
Vincent Berry 4
Wyatt Dalton 1
Yeo Hewitt 1

Assignment #1 Solutions

Here are the solutions:


Now, the formulas don't have to be in the exact sequence, you could have the > symbol < and the "Less" before the "Greater. But the answers remain.

Best to you and see you!

Assignment #1


For each of the 4 cases, write the corresponding formula.


I will post the solutions on Sunday... but try to do it before then.